هندسة إقليدية · مضلع · ضلع · زاوية · مثلث · دائرة
يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه check here هو مماس لدائرة واحدة.
حيث يكون نصف المعين على شكل مثلث متساوي الساقين قاعدته هي قطر المعين، فإن:
نعم ، كل مربع هو معين ذو أربع زوايا قائمة ، لكن كل معين ليس بالضرورة مربعا.
الحساب بمعرفة طولَي القُطرَين، وذلك عن طريق القانون التالي:
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن حساب ارتفاع المعين دائماً باستخدام المعادلة العامة لمساحة المعين والتي تربط بين مساحة المعين وارتفاعه وطول ضلعه، وذلك كما يأتي:[٢]
يختلف المعين عن المربع أيضًا بأن زواياه غير قائمةٍ، بينما زوايا المربع جميعها متساوية وقائمة، لذا يصبح المعين مربعًا عندما تكون زواياه قائمة، وبعبارةٍ أخرى يمكننا القول بأن: "كل مربعٍ هو معين ولكن كل معينٍ ليس مربعًا".
يعتبر المربع والمعين من الأشكال الرباعية الهندسية التي نراها كل يوم، فعلى سبيل المثال، نرى شكل المربع في الطاولات، وصناديق البيتزا، بينما نرى الألماس والطائرة الورقية تتخذ شكل المعين، وغالباً يعتبر المربع معينًا لأنه يطبق خصائص المعين، أما المعين فلا يعتبر مربع، وذلك بسبب اختلاف بعض الخصائص الأخرى بينهما.[١]
للمعين زاويتين حادتين و اخريتين منفرجتين، إلا إن كانت إحدى الزوايا قائمة، عندئذٍ يكون الشكل مربعاً.
لحساب محيط المعين علينا إيجاد مجموع أطوال أضلاعه وبما أن جميع أضلاع المعين كالمربع متساوية في طولها؛ يمكن التعبير عن محيط المعين بالعلاقة:[٢]
much more Hamburger icon An icon used to characterize a menu that may be toggled by interacting using this icon.
بالإمكان معرفة وتمييز المعين عن باقي أنواع الأشكال الهندسية من خلال معرفة وفحص بعض الخصائص والصفات منها:
ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:
قاعدة المعين هي أحد أضلاعه حيث يمكن استخدام طول أي ضلعٍ، لأنه كما ذكرنا سابقًا أضلاع المعين متساوية في الطول، والارتفاع هو المسافة العمودية من القاعدة المختارة إلى الجانب المقابل.